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In a previous paper, the principles of analyticity and unitarity were shown to lead to a set of coupled 
nonlinear integral equations for the Regge pole parameters. In this paper, we demonstrate, for both boson 
and fermion trajectories, that these equations can be written in a very simple form which makes many of 
their mathematical properties transparent and permits their numerical solution by iteration. We then 
proceed to carry out their numerical solution in a number of interesting cases. Because our equations are 
approximate, we first solved the equations in the potential-theory case, where our results could be com
pared with those obtained from the Schrodinger equation. The agreement in most cases is good. Then we 
turn to the determination of the Regge pole parameters which describe relativistic TTT scattering at high 
energies. Neglecting the inelastic contributions, we calculate the Pomeranchuk trajectory, the p-meson 
trajectory, and the second vacuum trajectory P'. One notable result of this set of calculations is that the 
function Re <x(t) for the Pomeranchuk trajectory, as determined by our equations, agrees well with the 
results obtained by Foley et al. from an analysis of the tr~p angular distributions in the range —0.8(BeV/c)2 

<t< — 0.2(BeV/c)2. No spin-2 resonanace is found to lie on this trajectory. As for the p trajectory, we find 
that ap(t), — 0.8(BeV/c)2</<0, is larger than 0.9 for a wide range of input parameters. The width of the 
p resonance, as determined from our equation, is several times larger than the experimental width. This 
probably means that inelastic contributions must be included to obtain a correct value for the width. 
Finally, we outline various problems which remain to be investigated. 

I. INTRODUCTION 

IF Regge poles are to play an important role in under
standing the properties of high-energy scattering 

cross sections and of the many newly observed reso
nances, it appears essential to have a method for the 
dynamical determination of the Regge pole parameters. 
This belief is based on the following considerations: 

(1) Recent measurements of the angular distributions 
in Tp and pp scattering1-3 at high energies (15 < 
s/2mN2<2S) have been analyzed on the basis of a Regge 
pole model. The constancy of the total cross sections in 
the two systems at these energies at first suggested that 
one can assume that the dominant contribution to the 
cross sections comes from the Pomeranchuk trajectory. 
That this assumption cannot be correct in both cases, 
at least as far as the differential cross sections are con
cerned, is shown by the facts that almost no diffraction 
shrinking is observed in the irp system while consider
able shrinking is observed in the pp system. If the 
hypothesis that Regge poles dominate the high-energy 
scattering is still valid, it must mean that in the present 
energy range the analysis of the cross sections is compli
cated by the presence of several trajectories contributing 
in an important way. If this is the case, it would seem 

* Work supported in part by the U. S. Atomic Energy Commis
sion. Part of the work reported here is included in a thesis to be 
submitted by David H. Sharp to the California Institute of Tech
nology in partial fulfillment of the requirements for the degree 
of Doctor of Philosophy. 

t National Science Foundation Predoctoral Fellow, 1960-63. 
1 K . J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J. 

Russell, and L. C. L. Yuan, Phys. Rev. Letters 10, 376 (1963). 
2 C. C. Ting, L. W. Jones, and M. L. Perl, Phys. Rev. Letters 

9, 468 (1962). 
3 A. N. Diddens, E. Lillethun, G. Manning, A. E. Taylor, T. G. 

Walker, and A. M. Wetherell, Phys. Rev. Letters 9, 108, 111 
(1962). 

that reasonably clear cut experimental tests of the Regge 
predictions about total cross sections and diffraction 
peaks would be possible only if the Regge pole param
eters involved were known functions. 
(2) There is some reason to believe4 that when multi-
particle states are included in the analysis of relativistic 
scattering processes, the analyticity properties of the S 
matrix in the / plane will be complicated by the pres
ence of cuts in addition to simple poles. This circum
stance would result in further ambiguities in the in
terpretation of experimental data, which would be 
somewhat alleviated if the pole parameters were known. 

(3) I t is a consequence of the Regge formalism that a 
set of resonances or bound states, all having the same 
quantum numbers including / parity, but having differ
ent values of / and occurring at different energies, will 
all lie along the same Regge trajectory5-6 a(t). The 
existence of Regge cuts should not lead to any ambigu
ities in experimentally establishing the existence and 
properties of any such resonances. For this reason, 
the possibility of grouping the new resonances in Regge 
families, and of correlating a set of resonance parameters 
with each other and with the observed total cross sec
tions and angular distributions remains as an interesting 
application of the Regge theory. To make good use of 
this possibility, however, it seems essential to have a 
method with which to determine the Regge pole 
parameters. 

In a previous paper,7 the authors made use of the 
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analytic properties of the Regge pole parameters a{t) 
and r(t) plus the unitarity condition satisfied by the 
partial-wave amplitude to derive a coupled set of inte
gral equations which determine the location a(t) and 
the residue r(t) of a Regge pole as functions of L The 
equations obtained are approximate in that: (i) Only 
two-body scattering processes are included, and (ii) 
the unitarity condition is employed in a form which is 
valid only when Ima(/) is small. This latter condition 
implies that the influence of the coupling of one Regge 
pole to another is neglected. Many aspects of these 
equations were not understood at the time, in particular, 
the circumstances under which a unique solution might 
exist were not known. Moreover, numerical solutions 
had not been obtained and a quantitative idea of the 
usefulness or range of validity of the approximations 
made had not been arrived at. 

It is our purpose in this paper to discuss the properties 
of the above mentioned equations in considerably more 
detail and to obtain numerical solutions of them in 
several interesting cases. 

In Sec. II, we show how to transform our original 
set of equations so as to obtain an integral equation 
involving the single unknown function Ima(i). Once 
Ima(t) is obtained by solving this equation, we obtain 
Rea(/) and the residue r(t) by performing simple integral 
transforms. The derivation has been carried out for 
boson and fermion Regge trajectories. 

Because the equations we use are approximate, it is 
very desirable to compare our results for the Regge 
parameters with those obtained in some rigorous way. 
This is possible only in potential theory. Consequently, 
in Sec. I l l , we specialize the equations derived in Sec. 
II to their nonrelativistic form. We also make in Sec. 
III a number of comments on the more formal mathe
matical properties of these equations, especially those 
related to the uniqueness question. 

In Sec. IV, we present our calculations of the Regge 
parameters in the case of scattering in a single Yukawa 
potential of unit range. A wide variety of potential 
strengths are considered. These results are critically 
compared to those obtained by Ahmadzadeh, Burke, and 
Tate8 and by Lovelace and Masson.9 

In Sec. V, we solve the equations for the case of rela-
tivistic 7r7r scattering. In the case of irir scattering, we 
have obtained the positions of the poles describing 
the Pomeranchuk trajectory, the p-meson trajectory, 
and the second vacuum trajectory introduced by 
Igi.10 The properties of the P trajectory, as com
puted from our equations, agree well with those as
certained by Foley et al} from an analysis of if~p 
angular distributions. We use our results on the p-meson 
trajectory to obtainap(t)9 /<0, which governs the energy 

8 A. Ahmadzadeh, P. Burke, and C. Tate, Phys. Rev. 131, 1315 
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dependence of ov~p—ov+2> and of the corresponding 
angular distributions. 

Finally, in Sec. VI, we summarize the conclusions 
reached in this paper and outline a number of interesting 
problems which remain to be investigated. 

II. FORMULATION OF A SET OF INTEGRAL 
EQUATIONS FOR THE REGGE POLE 
PARAMETERS: RELATIVISTIC CASE 

Let us consider the relativistic scattering of two 
spinless particles a and b with masses ma and w&. We 
shall discuss the Regge poles of the partial-wave ampli
tude in the t channel for the reaction a+b —> a-\-b. Our 
purpose in this section is to derive a set of equations 
which will allow an approximate dynamical determina
tion of the position a\t) of the Regge pole and of its 
residue r(t)i which is equal to Res£A(a{t),t)li. 

The authors have recently suggested7 that the Regge 
parameters can be determined from the principles of 
analyticity and unitarity. If crossing*1 of trajectories is 
neglected, then botha(/) and r( / ) /g2 a ( 0 are real analytic 
functions of / with branch cuts from To to <x>, where To 
is the threshold value of t for the reaction a+b—>a+b. 

The function a(t) is assumed to have a behavior at 
infinity which permits us to express its real analyticity 
by means of a dispersion relation of the simple form 

a(0 = «o+ / - . (2.1) 
* JT0 (*'-/)(/'-/o) 

The situation is not so simple for the function 
r(t)/q2ait). The difficulty is that, because a(/) presumably 
approaches a negative quantity as t —> ± <», we cannot 
always write a dispersion relation for r(t)/q2aW in the 
once-subtraced form of Eq. (2.1). We can avoid this 
difficulty in the case of equal mass scattering by dealing 
with the function r(t)e~iTa(t). But if we consider the 
scattering of particles of unequal mass, a dispersion 
relation for r(t) would be complicated by the presence 
of kinematic cuts coming from the factor q2a^\ 

We have found that, for the purpose of obtaining 
equations for the Regge pole parameters from the princi
ples of analyticity and unitarity, it is wholly adequate 
simply to know that r{t)/q2aW is real analytic, and no 
occasion will arise where it is necessary to have a dis
persion relation for r(t)/q2a(t). Therefore, we can avoid 
the complications mentioned above. 

We shall use the following kinematic variables: 

/=4co2 

= total cm. energy squared in / channel 
= w«?+W+2f [ ^ (2.2a) 

and 

^ ' I D - ( « a + W 5 ) 2 p - (»a-Wb)2]}/4/ , . (2.2b) 

11 H. Cheng, Phys. Rev. 130, 1283 (1963). 
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where #=c.m. momentum of an incoming or outgoing 
particle. 

The unitarity condition shall be written as 

r(/) = lma(0(co/g), t>T0 (2.3) 

Equation (2.3) is an approximate form of the unitarity 
condition 

[A (I,t)-A*(l*,t)y2i= (q/a)A*(l*,t)A (/,*) (2.4) 

which is valid when l~a(t) and Rea(To)>—%. 
F. Zachariasen12 has pointed out to us that we can 

use Eq. (2.1), (2.3), and the real analyticity of r(t)/q2a^ 
to derive a very simple integral equation for Imo;(/). 
This can be done as follows: 

Since we know that the function r(t)/q2ait) is real 
analytic, we have 

r*(t) = r(t*)e-2i™^\ t>T0. (2.5a) 

According to Eq. (2.3), r(t+) is real. Therefore, 

f ( ^ ) = r(r)dr2<*«c*-)> t>T0 (2.5b) 

where t±=t^zie. Let us write 

r(t)/(q2^) = F(t)eu^\ (2.6) 

where F(i) is a rational function of t, and U(t) is an 
analytic function of t cut from To to oo. The discontinu
ity of U(t) across the branch cut can be obtained from 
(2.5) and (2.6); 

U(t+) - U{t~) = - 2i Ima (t) Inq2. (2.7) 

Consequently, we can apply Cauchy's theorem to the 
analytic function U(t) to find 

U(t) = -
(t-h) /•- ln(9 '2) Ima(t') 

* JTO (t'-t)(t'-t0) 
•dt', (2.8) 

where we have normalized U(t) so that U(to) = 0. 
Equations (2.1), (2.6), and (2.8) give 

Xexp 
(t-l0) r HqVq2) lma(t') 7 To (t'-t)(t'-to) 

dt' (2.9) 

where the dispersion relation for a(t), Eq. (2.1), has 
been used to replace a(t) in (2.6) by the right side of 
(2.1). Equations (2.3) and (2.9) then give 

Ima(t)=-F(t)q2a° 
0) 

Xexp — 
t-h 

J T0 

>\n(qf2/q2)Ima{t') 

t'-t t'-h 
•dt' 

t>TQ. (2.10) 
12 F. Zachariasen (private communication). Professor Zacharia-

sen's observation has proven to be of decisive importance in 
extracting useful information from our equations. 

One point is worth noticing. We know that Ima(i) is 
always real, but a0 may be complex, and at first sight, 
the right side of (2.10) may appear to be complex. 
However, we can easily see that we can replace a0 by 
Rea0 and the integral by its Cauchy principle part, and 
then the right side of (2.10) is actually real. 

Now let us determine the function F(t). We shall as
sume that r(t) has no poles, in which case F(t) is entire 
in L We obtain from Eq. (2.10) that 

lma(0—>\F(t)q2a°exp 
f lng2 r">Ima(t') 

\ 7T Jn t'-TQ I'—to ) 

= X F ( 0 g 2 a ( o o ) , (2.H) 

where X is a constant. If we now require that Ima (2) 
vanishes as t—* <», then F(i), being entire, is a poly
nomial of order n satisfying the inequality 

» < - a ( o o ) . (2.12) 

Moreover, from (2.9), we find 

qo^F(to)^r(t0). (2.13) 

Thus, we can infer that the general form of F(t) is 

F(ty-
go2"0 i-Ato-ti/ 

(2.14) 

where the U specify the location of the zeroes of r(t). 
We shall go into the question of zeroes, and the connec
tion between the number of zeroes and the asymptotic 
behavior of Ima(/) more fully in Sec. I l l which treats 
the potential theory case. If we suppose that the tra
jectory of interest has 0 or 1 zero, for example, then the 
resultant equations take the form: 

Ima(/) = -r(/o)l 
CO 

Xexp 

/ q \2 a o 

Vgo/ 

t-h r 

T J1 

' ln(g , 2 /6/)Ima:(0 

t'-t t'-U 
•dt'\ (2.15) 

or 

-M—X1) 
o) \to—ti/\qQ/ 

Xexp 

go/ 

t-h rln(q'2/q2)Ima(tf) t-h r 

TT J T0 t'-t t'-t 
-dt'\ 

t>T0. (2.16) 

Equations (2.15) and (2.16) are the desired results. 
What we have achieved is a decoupling of Eqs. (2.1) 
and (2.3) so as to obtain an integral equation involving 
the single unknown function Ima(/). Once we have 
solved for Imo:(/), we can obtain Rea(/) by performing 
a simple Hilbert transform. For t>To, r(t) is obtained 
algebraically from the unitarity condition (2.3) and, 
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for other values of /, it can be obtained from the dis
persion relation for r(t)e~iTa(t) if wa=w&, and from Eq. 
(2.9) in the general case. 

Equation (2.15) has many attractive features. It 
incorporates the known threshold behavior of Ima(/), 
it exhibits the possible zeroes of r(t) explicitly, it has a 
reasonable asymptotic behavior, and it is in a form 
which suggests the possibility of a solution by some 
iteration procedure. If this is the case, it is plausible 
that the solution is unique if Rea0, r(h) a n d the location 
of any possible zeroes in r(t) is given. These and other 
properties of the integral equation (2.15) for Ima(t) 
are discussed in Sec. III. Here we shall proceed directly 
to a derivation of the integral equations which govern 
Ima(/) in case a fermion Regge pole is exchanged in the 
t channel. 

We shall consider Regge poles in the partial-wave 
amplitudes f±(J,W), W=\/t, which describe transi
tions in states of definite total angular momentum 
/=/=£: J and orbital angular momentum /. These ampli
tudes have the following symmetry13'14: 

U(j,-w)=-fM,w). (2.17) 

Accordingly, the Regge pole parameters connected with 
f±(J,W) satisfy15-16 

a+(-W) = a-.(W) (2.18) 
and 

r+(-W)=-r-(W). (2.19) 
The function a+(W) is real analytic and satisfies a 

dispersion relation15 

W-Wo r lma+(W')dW' 
a+(W) = ai.(W0)-

7T JT\ 

W—Wo rK 

7T J W 

wT(W'-W)(W'-Wo) 

Ima-(W')dW 
(2.20) 

iWT(w'+w)(w+w*y 
where WT— (fna+nib) is the total cm. threshold of the 
system and Wo the energy at the point of subtraction. 
In writing this dispersion relation, we have ignored the 
branch cuts arising from the crossing11 of the trajectories 
a+ and a_. 

The unitarity condition satisfied by these amplitudes 
is of the form 

U±(J,W)-f^(J^W)y2i==qf±^J^W)f±(J,W)y 

W>WT. (2.21) 

We approximate the unitarity condition (2.21) by 

r±(W+ie)= (1/q) Ima±(W+ie), W> WT. (2.22) 

The functions f±(J,W) have kinematic singularities 
and, as a result, the functions r±(W) have kinematic 
singularities. However, the functions 

h±(J,W)-
W f±(J,W) 

E±ma (q2)J-l 

where E is the energy of the particle a 

W2+ma
2—mb2 

(2.23) 

E=-
2W 

do not have kinematic singularities.16 Therefore, the 
functions (W/Edbma)r±(W)/'(g2)*^""* are real analytic 
in the W plane, with branch cuts from WT to <*> and 
from — oo to — WT» Consequently, we have 

r±(W~ie) = r±(W-ie)e2«i^w-i^-». (2.24) 

Let us consider the amplitude h+(J,W). As before, we 
write 

W r+(W) 
--F{W)euw\ (2.25) E+ma {q2)«+W- i 

where F(W) is an entire function of W and U(W) is 
analytic in W cut from WT to co and from — oo to 
— WT. We obtain 

U(W+ie)- U(W-ie) = -2% Ima+(W+ie) \nq2, 
W>WT (2.26a) 

and 

U(W+ie)-U(W-ie)=:2ilma^'-W+ie) \n\q2\ , 
W<-WT. (2.26b) 

The above equations give 

W-WQ r I m o ^ ^ O l n f 
U(W)= / -dW 

7T Jwr(W'-W)(W'-Wo) 

W-WQ r Ima-(W') \nqf2 

J n 'wrfW'+WHW'+Wo) 

From (2.25), (2.26), and (2.27) we get 

•dWf. (2.27) 

E+ma r W-W0 
r+(W) = (tfo+W-tFiW) exp 

W L 7T L Mq'W) 
•Tmu+(W')dW' 

wr(W'-W)(W'-W0) 

W-Wo r \n(q'2/q2) -Wo r 

7T J VI wT(W'+W)(W'+Wo) 
•Ima-(W')dW' 1. 

13 S. W. MacDowell, Phys. Rev. 116, 774 (1960). 
14 W. Frazer and J. Fulco, Phys. Rev. 119, 1420 (1960). 
15 V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 43, 1529 (1962) [translation: Soviet Phys.—JETP 16, 1080 (1963). 
16 V. Singh, Phys. Rev. 129, 1889 (1963); N. Dombey (private communication). 

(2.28) 
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and 
/E+ma\ r W-Wo r«> Mq'2/q2) 

lma+{W) = [ )(qi)^w^F(W)exp\ / Ima+(W')dW 
\ W I 1 T JwT(W'-W)(W'-W0) 

Also, we have 

r_(W)=-r+(-W) 

wT(W'-W)(W'-W0) 

I „",!./..', ... T^aa-(W')dW \, W>WT. (2.29) 
J w 

W-W0 r Mtf'W) 1 
/ ! _ ! _ lma-.{W')dW' 
lwT<W'+W)(W'+Wi) J 

/E-ma\ rW+W0 f 
= - ( K ^ c ^ - i F C - W O e x p / 

\ W / L T J y, 
Ima+(W')dW' 

and 

/E-ma\r^ _ i^ / _ \-w+w0 f°° MqVq2) 

,(W'+W)(W-

+ W0 r ln(g'2/?2) 1 
/ Ima-(W')dW'\, (2.30) 

x . / i r r ( W ' - H W + W r o ) -1 
/E-ma\ rW+Wo /•- ln(9'2/?

2) 
Ima_(W0 = -.'( 1 (o«)«+^«)F(-W) exp / lma+(W')dW 

\ W J I T JWT(W'+W)(W'-W0) 

w+w0 r» Hq'Vq2) „ , „_ „„.~| 

'wT(W'-W)(W'+Wo) 

w+wa r Hq'Vq2) l 
. / Ima-(JV')dW'\, W>WT. (2.31) 

W JWT(W'-W)(W'+WO) J 

The function F(W) is a polynomial of order w in W, and satisfies 

w+2o+(«>)<0, 
and, hence, can be written as 

Wa 1 n/W-Zi\ n /W-Zi\ 

F(w)= /+(Wo)n( 
i-ATFo-Zy 

£o+w0 fofl«+<™-» 

where Z» are the zeroes of r+(W). 
We thus obtain the following set of coupled integral equations to solve for Ima±(W): 

W<>E+ma n/W-Zt\ 
Ima+(W0 = — qtf/qfy^W-ir+iWtml— -) 

W E0+ma i-Aw0-Zj 
f W-W0 rx fq'W Ima+(W) Ima_(W") "I 1 

Xexp / l n — l \dW'\ , W>WT, (2.32) 
I r JWT \q2Jl(W'-W)(W'-W0) (W'+W)(W'+WB)J J 

W<>E-ma n/Zi+W\ 
Ima_(W0 = -qtf/qjy^-ir+iWomi ) 

W Ea+ma i=\Zi-Wj 

Xexp / I n — ) —\dW'\, W>WT. (2.33) 
I T JWT \q*/L(W'+W)(W'-W0) (W'-W)(W'+W0) 

Given Ima±(W), we may obtain the functions r±(W) from (2.28) and (2.30). 

III. FORMULATION AND DISCUSSION OF A SET OF INTEGRAL EQUATIONS 
FOR THE REGGE PARAMETERS: POTENTIAL THEORY CASE 

In this section we shall turn to the formulation of a set of integral equations for the Regge parameters in the 
case when the scattering may be described by a superposition of Yukawa potentials. This topic is of interest 
because the most clear-cut check on the validity of our approximate form of the unitarity condition comes from a 
comparison of our results for the Regge parameters, computed for a single Yukawa potential, with the existing 
results found by numerically solving the Schrodinger equation.8 Secondly, we can establish, in this case, several 
rather precise theorems regarding the properties of the integral equation which we shall derive for Ima(c). Here, 
v=k2 is the energy. 
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We recall that a(y) and r(v)/vaiv) are both real analytic functions of v cut from 0 to °o, when crossing of trajec
tories is neglected. The approximate form for the unitarity condition reads 

r(v) = Ima(v)Wp. (3.1) 
Writing 

r(v)/v«=F(v)eu^ 

and applying the same procedure as in the relativistic case, we obtain 

(v-vo) r ln(>'/*>) 
Tma(v) = r(y0)M — ) I l ( — ) exp / Ima(v')dv' , v>0, (3.2) 

\vo/ i=l\VQ—Vi/ L 7T Jo (v'—v)(v'—Vo) J 

/vyo n /V-Vi\ r (v-vo) C™ ln(/ /V) 1 
f W = f W h n j exp / -Tma(v')dp'\, (^) 

\VQ/ i=0\p0—Vi/ L T JQ {vf—v){vf—Vo) J 

where v0 denotes the point of subtraction and Vi, i = l , which is a finite number. If vc is real, then the cut is 
• • •, n gives the location of the zeroes of r(v). from vc to oo. Now5,9'11 

We would now like to show the relationship between , . , , . . ^ 
the number of zeroes of r(*>) and the asymptotic ma{v) —> U? / V *v > v • J 
behavior of the Regge parameters. r(v)-+ — (g2/2v), v —> oo 

From Eq. (3.2) we have j / \ • i r i ^ i 
^ v y and r[y) is real for v real. Thus, 

Ima W -> ,«(«>+»+*, „ _> oo , (3.4) f („+)„+-«W> 

I m a ( ^ ) - > ^ W + s j / - > 0 . (3.5) r(i/_>_r*<"-> F L w J> 

Equation (3.4) shows that the number of zeroes is and, therefore, 

n<-a(^o0^ij (3,6) AU(v)+AW(v)->-2iIma(v)\nv as z>-*oo, (3.13) 

and Eq. (3.5) gives the familiar threshold behavior of Thus we have 
the Regge poles in the right-hand plane 1 ^ P T ( J / ) r™ AU(v') 1 

Rea(0)>-J. (3.7) ̂ W + ^ W ^ ~ / - * ' + / " 7 — * ' , 

Equation (3.6) is actually independent of our approxi- _> 00 (3 14") 
mation. To prove this statement, we recall that r(v)/va{v) ' 
is a real analytic function of v with cuts from 0 to 00 as which is a finite number. Equations (3.8), (3.11), and 
well as those coming from the crossing of trajectories. (3.14) together give 
We can therefore write , _ • , ,„ . ^ 

r(v)-^v«^+n, v->oo (3.15) 
r(p)=va^F(v)eu^ew^\ (3.8) 

where n is the number of zeroes of r(v). Comparing 
where U(v)is analytic in v cut from 0 to 00 and W(v) (3.12) and (3.15), we conclude that 
is analytic in v with cuts arising from crossing of tra
jectories. The functions U(v) and W(v) can be written n=* — a(co) — 1. (3.16) 

— °° 1 ATM /Nl ^ e **rst ^eS&e trajectory, having a(oo)= — 1 , there-
U(v\ — _ I —-dv' (3 9) ^ore> n a s n o ze ro> w n ^ e the second, the third, . . . tra-

T JQ y'—v (v'—vo) jectories have one, two, . . . zeroes, respectively. 
and Now let us discuss Eq. (3.2) for the leading trajectory, 

TT7/ N v—vof AW(v') dv' which has no zero. Then we may write 
W{y) = / , (3.10) 

7T Jc (v'-v) {v'-vo) r(v0) (v—vo) r \n(v'/v) 
U(v)= / • v'<xo+heu(v')dv' 

where AU(v) and AW(v) are the discontinuities of V^Q T JQ rv'_v\rv'—VQ\ ' 
U{v) and W(v) across the cut, and c is the contour of the a n ( | 
cut arising from crossing of trajectories. If the tra- Ima(v)=[r(vo)/voao^vao+hU(p), v>0. (3.17) 
jectories cross at vc and vc is complex, then c is the 
straight line11 going from vc to v? and If we take the subtraction point at v=0, then we obtain 

1 r AW(v') v r«>\n(v'/v) 
W(v)—•»— / dv', (3.11) * 7 M = - X - / v>am-meuiV>)dv> ( 3 . 1 7 a) 

"-*» TTJC v'-vo IT JO {V'-V) 
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and 

where 
r{v) 

X = l i m — - . 
v-*0 V<X(P) 

And, if we take the subtraction point at v= <*>, then we 
have 

X r00 ln(i//iO 
U(v)=— / v>at»)+uieuv)dy> (3.17b) 

TT J 0 (V'—V) 

and 
lma(v) = \va^+hUM, v>0, 

where 
. r(v) 

X = lim . 

We should like to point out several interesting conse
quences of Eqs. (3.17a) and (3.17b). We require 
lma(0) = 0 and lma(oo) = 0. Thus, the following in
equalities have to be satisfied: 

« ( 0 ) > - i (3.18a) 

a(oo) < - J . (3.18b) 

If we take a(oo) = — 1, which is correct for the leading 
trajectory, then (3.17b) shows that Ima(v) has the cor
rect asymptotic form as v—>oo, providing X=g2/2. 
The solution of (3.17b), which is the equation having 
the subtraction point at v— <*>, should thus be expected 
to give a good approximation to a{y) and r(v) at large 
v. For the same reason, the solution of (3.17a), which 
gives the correct threshold behavior, should approxi
mate a(v) and r(v) accurately at small v. I t has been 
pointed out to the authors17 that (3.17b) is dependent 
on the coupling constant g2 only and is independent of 
the range n of the potential. But (3.17b) is good only 
for v large, and when the energy is large the mass can 
usually be neglected. In fact, the asymptotic forms for 
a(v) and f3(v) have been shown to be independent of 
/x. I t is therefore natural that the range of the potential 
does not enter in (3.17b). On the other hand, if we 
make a subtraction at v=0, or at some point vo near 
zero, then the solution will be accurate at low energy 
if the subtraction constants a(vo) and r(vo) are both 
supplied. I t should be noticed that if we make a subtrac
tion at some finite point ^o, then the solution of (3.17) 
would not automatically give a(oo)= — 1, in disagree
ment with the known behavior of the trajectory. How
ever, in this case, we expect the solution to be accurate 
only at low energy, and its behavior at v— <*> cannot, in 
general, be expected to be given in a precisely correct 
way using our approximate equations. 

Suppose we have two functions £/(1)(y) and U{n(v) 
satisfying (3.17a) with different subtraction constants 

Xi and X2 but the same subtraction constant a(0). Then 
a change of variable shows that 

U<n( V Uw( ) (3.19) 
\[Xi>«»W \[x2>(0)+1/2/ 

and as a result 

a<»( W<»( V (3.20) 
\[Xi><°>+1/2/ \[X2]^°>+1/V 

In particular, we have 

a<1>(oo)=a^(oo). (3.21) 

Thus, we see that «(<*>) is determined by the subtraction 
constant a(0) and is independent of X. Similarly, the 
solutions of (3.17b) give the same a(0), if a(00) is 
fixed and X is varied, and equalities similar to (3.19) 
and (3.20) hold. 

Now let us turn to the question of the existence of 
a solution of Eq. (3.17a) or (3.17b). First, it is clear 
that because of Eqs. (3.19) and (3.20), if there is a solu
tion of Eq. (3.17a) for a certain X and a(0), then there 
is always a solution of Eq. (3.17a) for an arbitrary X 
and the same a(0). The same is true for (3.17b). The 
question of existence and uniqueness of a solution de
pends on the subtraction constant a: (0) [or a (00)] only. 
Secondly, (3.17a) does not have a solution for an arbi
trary a(0). A necessary condition for the existence of a 
solution of Eq. (3.17a) is Eq. (3.18a). For, if there is a 
solution of Eq. (3.17a), then £7(0) = 0, and the integral 
on the right side of (3.17a) does not converge at the 
end point v' — 0 unless (3.18a) is satisfied. Similarly, a 
necessary condition for the existence of a solution of 
Eq. (3.17b) is (3.18b). 

Some precise theorems on the existence and unique
ness of the solutions of Eqs. (3.17a, b) can be proved18 

if certain conditions on the subtraction constants are 
satisfied. 

IV. REGGE POLE PARAMETERS FOR A SINGLE 
YUKAWA POTENTIAL. PRESENTATION 

AND DISCUSSION OF RESULTS 

The Regge pole parameters associated with a single 
Yukawa potential of unit range have been obtained by 
Ahmadzadeh, Burke, and Tate8 and by Lovelace and 
Masson,9 for several potential strengths. Ahmadzadeh 
et al.8 obtained their results by solving the Schrodinger 
equation numerically, while Lovelace and Masson9 used 
a continued fraction technique applied to the known5,9,11 

form (in potential theory) of the asymptotic (k2 —» 00) 
expansions of the Regge parameters. 

A comparison of the Regge parameters as calculated 
using Eq. (3.2) of the preceding section with the results 
of Ahmadzadeh et a/.8 and Lovelace and Masson9 

provides an important test of the accuracy of our ap-

M, Gell-Mann and F. Zachariasen (private communication). 18 H. Cheng (to be published). 
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0 0.10 0.20 0,30 0.40 0.50 0.60 0.70 0 .80 0.90 1.00 

FIG. 1. lma(v) versus v/(l-\-v), 0<p< oo. The results of this 
work are compared with those of Ahmadzadeh et al. (Ref. 8) for 
single attractive Yukawa potentials of unit range and strengths 
^4=0.05, 0.30, and 5. In our equations, subtractions have been 
made at vo—1.0 and 0.1 for the case A — 5, and at *>0 = 0.1 for the 
case A =0.05 and 0.3. Here, v = k2. 

proximation. This section contains such a comparison. 
Our procedure was to use the results of Refs. 8 and 9 

to supply the value of a(v) and fi(v) at a subtraction 
point vo. [We actually obtain ($(vo) from Ima(vo) and 
the unitarity condition (3.1).] Then we solve Eqs. (3.2) 
and (2.1) numerically19 for the functions Ima(v) and 
Rea(v) as functions of v for v in the range — oo <" v < oo. 
A solution could always be obtained after a few itera
tions if we used the average value of the input and out
put functions as the next input. 

The results for several values of the potential strength 
A are presented and compared with the results of Refs. 
8 and 9 in Figs. 1-8. Results for Ima(v) are presented 
for the range v=0—> oo and for Rea(v) for the range 
j / = - 2 - > + o o . 

Let us consider some individual curves. In the case of 
strong coupling, 4̂ = 5 and 15, we see from Figs. 1-4 
that we obtain quite good qualitative and quantitative 
agreement between our results and those of Refs. 8 and 
9 over the entire range of energy. Note that in the case 
A = 5, results are presented for two different subtraction 
points. The solutions are essentially the same. We would 
like to mention also that if we have obtained Ima(v) 
correctly, Rea(v) must also be given correctly, subject 
to the assumptions: (a) that a(v) is a real analytic 
function; (b) that the trajectory considered does not 
cross with other trajectories; and (c) that the Hilbert 
transform has been performed without significant 
numerical error. 

Next, we consider curves in the regime of intermediate 
coupling, A = l, 1.8, and 3. For the case A = 3, Figs. 5 

19 In solving these equations numerically, we have used an "on
line" computing center as developed by Dr. G. J. Culler and Dr. 
B. D. Fried of the Thomson-Ramo-Wooldridge Corporation. 
This system has proved to be of particular value in our problem in 
instances where it was difficult to devise a convergent iteration 
scheme. For a detailed description of their computing facility, see 
G. J. Culler and B. D. Fried, Ramo-Wooldridge Research Labora
tory report, January 1963 (unpublished). 

FIG. 2. Rea(v) versus v/(l+p), — 2 o < oo. Results for poten
tial strength A — 5 compared with those of Ahmadzadeh et al. (Ref. 
8) See caption of Fig. 1. 

and 6, the solution obtained has an accuracy comparable 
to that found in the strong-coupling case. For the case 
A = 1.8, Figs. 7 and 8, we find a case in which we obtain 
our poorest agreement, but the solution still possesses 
the correct qualitative shape, and is quantitatively ac
curate in a region around the subtraction point. The 
case A = l shows the same general features (Figs. 5 
and 6). 

Turning now to the weak-coupling cases, 4̂ = 0.05 
and 0.30, we find the agreement much improved. In the 
case 4̂ = 0.05, Fig. 1, the agreement for the Ima curve 
is fully comparable to that obtained in the strong 
coupling cases, with the exception of the region 
0 <(*>/!+*>)< 0.05. We understand the departure of 
the curves in this region from the correct ones to be due 
to limitations on the numerical accuracy with which we 
carried out the integral transforms involved. This prob
lem is extreme in these cases, because we find from Ref. 
8 that in the case 4̂ = 0.05, Ima(v) goes from 0 to 
^0.10 while *>[« J>/(1 + J>) for K<Cl] goes from 0 to 
10~3. The value 0.10 represents ~60% of its peak value. 
Our program could not handle such rapid changes ac-

«/K 1 ' 1 

3.0 V- 0.03H / i-l 

0 ' OIO o i i o O 3 0 0 ~ 4 0 0 . 5 0 o]60 0 7 0 O 8 0 . 0 . 9 0 T7o 

FIG. 3. Ima:(j>) versus v/(\-\-v), 0 < p < o o . Comparison of the 
results of this work with those of Lovelace and Masson (Ref. 9) 
for a single Yukawa potential of unit range and strength 4̂ = 15. 
The point of subtraction was PQ — LO. Here, v — h1, 



1862 H . C H E N G A N D D . S H A R P 

J 2.0 ^ \ 

. _ . f 

Rea 

1 

-1.0 • -0.8 -0.6 -0.4 -Q.Z 

A* 15 

LM 
CS, »/ 1 

-1.0 1 

i+v 

0 0.2 0.4 0.6 0.8 

- -0.3 

-1.0 

10 

1 
I 
i! 
ii 
i 
i 
i 

FIG. 4. Rea(v) versus v/(l-\-v), —2<v<&. Results for poten
tial strength A —15 compared with those of Lovelace and Masson 
(Ref. 9). See caption of Fig. 3. 

curately, although this situation could no doubt be 
improved. Similar remarks apply to the case 4 = 0.3 
(Fig. 1). 

We do not understand why our approximation should 
be so much better in the strong- and weak-coupling 
cases than in the intermediate coupling case. One pos
sibility is that the intermediate coupling region is one 
in which the first and second Regge trajectories for a 
given coupling strength cross. If this is the case, then 
the dynamical equations for the Regge parameters in 
the form we have used them here are not correct.7,11 

FIG. 5. Ima(v) versus v/(l-\-v), 0<v< oo. Results of this work 
compared with those of Lovelace and Masson (Ref. 9) for single 
Yukawa potentials of unit range and strengths A = 1 and ^4=3. 
The point of subtraction was vo=l. Here, v = k2. 

However, we have no evidence that such crossings are, 
in fact, responsible for the disagreement. 

An interesting fact is that the curves Rea(y), for 
v —> oo, all approach negative values fairly close to — 1 
in good agreement with the asymptotic behavior of 
Kea(v) which has been proven rigorously.5,9,11 [ 4 = 5, 
Rea(oo) 1.39; 4 = 3, Rea(oo) 1.29; 4 = 1.8, 
Rece(oo) 0.75, - 1 . 0 5 ; 4 = 1.0, Rea(oo) 1.19; 
exception 4 = 15, Rea(oo)^ — 2.66.] This result was 

obtained without making any explicit assumption about 
the asymptotic behavior of Rea. 

The function r(v) obtained from our equation, in 
the case 4 = 5, was compared with that obtained by 
Ahmadzadeh, Burke, and Tate.8 The curves have a 
reasonably correct shape, and there is quantitative 
agreement in the low-energy region. 

To summarize, we feel that the results presented here 
support the following general conclusions in the case of 
potential theory: 

(1) Our equations provide a dynamical determination 
of the Regge parameters which always gives the correct 

FIG. 6. ReaO) versus v/(l-\-v), — 2 o < °o. Results for poten
tial strengths A = 1 and 3 compared with those of Lovelace and 
Masson (Ref. 9). See caption of Fig. 5. 

shape of the curves, and gives quantitatively correct 
results in the neighborhood of the subtraction point. 

(2) In case the coupling of the Regge poles is strong 
or weak, we get good quantitative agreement over a 
considerable range of energy. 

Finally, we emphasize that our equation has been 
tested for the leading trajectories only, which have no 
zeroes. I t will be interesting to see if our equation yields 

FIG. 7. Im«(v) versus v/(\-\-v), 0 O < oo. Results of this work 
compared with those of Ahmadzadeh et al. (Ref. 8) for a single 
Yukawa potential of unit range and strength 4 = 1.8. Subtractions 
were made at the energies VQ=0,1 and P O = 0 4 . Here, v = ki. 
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FIG. 8. Rea(v) versus ^/(1+^), — 2 o < o o . Our results for a 
potential strength 4̂ = 1.8 compared with those of Ahmadzadeh 
et al. (Ref. 8). See caption of Fig. 7. 

accurate solutions for other trajectories which have 
zeroes and for which a ( 0 ) > — \. 

V. THE REGGE POLE PARAMETERS IN 
RELATIVISTIC *xiz SCATTERING 

In this section, we shall apply the equations derived 
in Sec. I I to discuss elastic 7T7T scattering at high energies. 
We will consider the contributions to this scattering of 
the Pomeranchuk trajectory, which has the quantum 
numbers of the vacuum and ap(0) = l, and the p tra
jectory which gives a 2ir (J=l, 1=1) resonance at 
750 MeV. We shall also briefly discuss the second 

FIG. 9. Pomeranchuk trajectory. Reap(t) versus /, —0.80 
X(BeV/c) 2</< oo. The three curves shown are calculated using 
the input parameters: (a)«p(0) = 1, ov,r(<x>) = 10 mb; (b)ap(0) = l, 
o-T7r(oo) = 15 mb; and (c) ap(0) = l, ov,r(«>) = 20 mb. 

vacuum trajectory Pf introduced by Igi.10 Since direct 
measurements of the 7T7r-scattering cross sections are 
not yet available, we have concentrated here on obtain
ing the positions a(t) of these trajectories, which func
tions will then occur in all reactions having the proper 
quantum numbers. 

We shall first discuss the Pomeranchuk trajectory. 
I ts Regge pole parameters will be determined by Eqs. 
(2.1) and (2.15) which, as we have mentioned, couple 
the Pomeranchuk trajectory only to itself. 

Oure procedure was to supply as input parameters the 
quantities ap(0) = l and20 

<r„(oo ) = - (47r2 /3)[2ap(0)+l>p(0) , 

and solve the equation for Ima^ by an iteration pro
cedure which takes the average value of the input and 
output functions as the next input. Then Reap(/) was 
obtained from the dispersion relation (2.1). 

We have obtained solutions for 0-^(00) in the range 
30—>30 mb. The results for Keap(t) and Imap(t) for 
o"7r7r(oo) = 10, 15, and 20 mb are shown in Figs. 9 and 
10. In Fig. 11, our results for Reap(t), for -0 .8(BeV/c) 2 
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FIG. 10. Pomeranchuk trajectory. Imap(t) versus/, 0.08 (BeV/c)2 

<t< co. The three curves shown were calculated using the input 
parameters listed in the caption of Fig. 9. 

< / < 0 , are compared with those obtained by Foley 
et al.1 from an analysis of the if~p angular distributions 
measured at incident momenta in the range 7 to 17 
BeV/c, and for the above-mentioned range of /. 

I t will be noted that our Reap curves fall within the 
error flags around the experimental points measured by 
Foley et al.1 We feel that this agreement is reasonably 

FIG. 11. Compari
son of Rea (0 for the 
Pomeranchuk tra
jectory as computed 
in this paper (input 
parameters; <xp(0) = 1, 
<r„(°o) = 10, 15, 20 
mb) with Rea(t) as 
determined by Foley 
et al. (Ref. 1) from 
an analysis of ir~p 
angular distributions 
for incident momenta 
in the range 7 BeV/c 
to 17 BeV/c and 
-0.80(BeV/c)2<* 

<-0.20(BeV/c)2 . 

I 1 l I I l l I I I I I I I I I I I ! 

^irir'- 20 mb 
airir r .'5 mb 

tr-mr* '0 mb 
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} This relation is derived in the Appendix. 
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FIG. 12. P' trajectory and p-meson trajectory. Reap>(t) versus /s 
Reap(0 versus /, — 0.8(BeV/c)2</< «>. The input parameter; 
were: (a) For the P ' ; ^ ( 0 ) = 0.50, ov^'O)(*«20(BeV)2) = 5 mb; 
(b) for the p, Reap(rap

2) = 1, Imap(mp
2) = 0.10. 

significant because the region where the comparison is 
made is very close to the subtraction point (t=0), which 
is, of course, the region in which our results are most 
reliable. Secondly, the results are not extremely sensi
tive to the value of the input parameter o-^(oo). 

The fact that our result for Reap agrees with that of 
Foley et at.1 naturally implies that it disagrees with 
Reap as it has so far been determined from an analysis 
of NN scattering data.1-3 

We do not have a resolution of this puzzle. However, 
we do feel that it is more likely that the TTN rather than 
the NN angular distributions are dominated by the 
Pomeranchuk trajectory. The reason for this is that 
the statement that the Pomeranchuk trajectory domi
nates NN scattering, which depends on the assumption 
of a cancellation of large contributions from the Pf and 
co (or perhaps 4>) trajectories,21,22 is much more model-
dependent than the conjecture that it dominates irN 
scattering. 

We note from Fig. 9 that Reap(t) does not pass 
through 2 for any value of t. This implies that there is 
no spin-2 resonance on the Pomeranchuk trajectory. 
However, it may well be that the inclusion of inelastic 
states could change this conclusion. Moreover, the re
gion where the curves peak [t~2 or 3 (BeV/c)2] is 
rather far away from the subtraction point, which may 
result in further inaccuracies. 

We have also obtained solutions for the Pr trajectory,10 

assuming oy(0) = § and, quite arbitrarily, that a t - J=0 
and s~20 (BeV)2 it contributes 5 mb to the total TIT 
cross section. Results are shown in Figs. 12 and 13. I t 
is of interest to note that Re<v falls off considerably 
faster for negative t than does the Pomeranchuk tra
jectory, and that it reaches its peak value at a much 
lower energy | J~0.15 (BeV/c)2]. 

Lastly, we have obtained solutions for the p tra
jectory. 

21 F. Hadjioannou, R. J. N. Phillips, and W. Rarita, Phys. Rev. 
Letters 9, 183 (1962). 

22 D, H. Sharp and W. G. Wagner, Phys. Rev. 131, 2224 (1963). 

TABLE I. A list of values of Tp and ap(0) for input parameters 
oip(mp

2) = l and Imap(wp
2). 

Imo:p(mp
2) 

0.005 
0.010 
0.025 
0.100 

I \ 
Ima 

mpe 

3.79 
4.45 
6.35 

18.9 

p(mp
2) 

pirnf) 

mx 
mT 
m* 
m* 

«P(0 ) 

0.990 
0.983 
0.966 
0.913 

In this case, we solved for the trajectories in the 
following way. We used the fact that Reap(wp

2) = 1 and 
then we chose a reasonable corresponding value of 
Ima p(rn2). We then obtained a set of solutions corre
sponding to these parameters, computed ep(mp

2) and 
checked to see if the width as given by 

mpTp=Imap(mp
2)/ep(mp

2), (5.1) 
where 

€p(m
2) = d Rea p/dt\ *=mp

2 (5.2) 

came out correctly. Using this trial and error procedure, 
we were not able to find a set of parameters which gave 
a precisely correct value for the p width. 

In Figs. 12 to 15, we display our results for Reap(^) 
and Imap(t) for several values of the input parameter 
Ima:p(mp

2). The corresponding values of the width and 
ap (0) are summarized in Table I. 

I t is to be noted that we obtain a very large value of 
ap(0), and that we find ap( /)>0.90 for - 0 . 8 0 (BeV/V)2 

<t <0 (Fig. 14). This fact is quite insensitive to the 
magnitude of the input parameter ap{m2). Thus, we 
feel that the numbers we obtain for ap(t), t=0 or / < 0 , 
may not be modified greatly by the inclusion of inelastic 
states. The value of ap(t), - 0 . 8 0 (BeV/c)2<a 0, that 
we find seems to be consistent with the recent observa
tions of Lindenbaum et al2d who find little or no energy 
dependence of the w±p angular distributions. This sug-

- t ( B . v / c ; _ 

FIG. 13. Pf trajectory and p-meson trajectory. ImovW versus t; 
Imo:p(/) versus t, 0.08(BeV/c)2</< <*>. These curves were calcu
lated with the input parameters listed in the caption of Fig. 12. 

S. J. Lindenbaum (private communications). 
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FIG. 14. p-meson trajectory. Reap(t) versus /, — 0.8(BeV/c)2 

<t < oo. The three curves shown were calculated from the input 
parameters: (a) Recep(rap

2) = l, Imap(mp
2) = 0.005; (b) Reap(mp

2) 
= 1, Imap(mp

2) =0.010; (c) Reap(mp
2) = l, Imap(m

2) = 0.025. 

gests that 0.80<ap(0) < 1 , while we find typically 
aP (0)~0.98. An analysis of earlier data24 on the ^p 
total cross sections, restricted to incident momenta 
greater than 10 BeV/c may also support the conclusion 
that oip(0) is ~0.80 or larger.23 Moreover, one should 
bear in mind that the o-np data is so poor that a determi
nation of a p (0)~0.4 from that data is without much 
statistical significance.25 

The width of the p meson comes out too large by a 
factor of ^ 5 , assuming T p ^100 MeV. This, no doubt, 
indicates that inelastic states must be included in order 
to obtain the p width correctly. This is probably not 
surprising in view of the results of other attempts to 
determine the p width dynamically.26 

There is an additional complication that enters the 
determination of the widths from our Regge parameters. 
This is the fact that ep(rap

2) is a small difference of large 
quantities, and a very small percentage error in 
R e a p ( ~ i % ) may result in very large errors in 
€p(~100%). This may account for some of the error in 
our value of the p width. 

Finally, we would like to record that we found 
Reap(oo) 0.66 (erTT=15 mb); Re<v(oo> 0.63 
and Recep(oo)~-0.56 [Imap(mp

2) = 0.10]. We have 
made no explicit assumption about the asymptotic 
behavior except that Ima (t) —» 0 as t —> <*>. 

VI. CONCLUSION 

We have presented in this paper an approximate 
method for the dynamical determination of the Regge 
pole parameters. The equations we have derived for 
this purpose are simple in structure and rather easy to 
solve numerically. 

24 S. J. Lindenbaum, W. A. Love, J. A. Niederer, S. Ozaki, J. J. 
Russell, and L. C. L. Yuan, Phys. Rev. Letters 7, 352 (1961). 

25 V. I. Lendyel and J. Mathews (private communication). 
26 See, for example: F. Zachariasen and A. C. Zemach, Phys. 

Rev. 128, 849 (1962), who find Tp~400 MeV after including the 
contribution of irco intermediate states. 

In the potential theory case, where a comparison with 
an exact solution is possible, the agreement is gratifying 
in most instances. 

We do not understand why, in the nonrelativistic 
case, the accuracy of the solution obtained appears to 
be poorest when the potential strength is in the range 
1SA<3> I t may mean that, for A in this range, the 
one-pole approximation is not adequate. Alternatively, 
this trajectory may cross another, in which case the 
equations must be formulated differently.11 

In the relativistic case, the solutions obtained for 
the Pomeranchuk trajectory agree quite well with the 
experimental results of Foley et al.1 Our solutions for 
the p trajectory give a value of «p(0) which seems to be 
consistent with recent measurements of Lindenbaum 
et al.2Z However, we find that the width of the p reso
nance comes out too large. The inclusion of inelastic 
channels should improve the results. But whether we 
can achieve quantitatively accurate solutions by in
cluding just the two-body inelastic channels remains to 
be seen. 

The work carried out in this paper suggests a number 
of interesting problems, both analytical and numerical, 
for further investigation. 

We have mentioned the problem of including the 
inelastic channels in the equations, and finding their 
effect on, for example, the p width. 

A critical test of our equations can come from a 
determination of the fermion trajectories, using the 
equations derived in Sec. I I . For example, if we supply 
the mass of the nucleon and the wNN coupling strength, 
can we predict the position and width of the /§ reso
nance that is believed to lie on the nucleon trajectory? 
If so, the same method can be used to discuss all the 
meson-baryon resonances. 

We have noted (Sec. V) that the Pomeranchuk tra
jectory ~Reap(t) that we obtain is in agreement with that 
obtained from icN scattering, but not with the results 
from NN scattering. This probably means that several 
Regge poles contribute in an important way to NN scat-

FIG. 15. p-meson trajectory. Imap(/) versus t, 0.08(BeV/c)2 

<t< oo. The three curves shown were calculated using the input 
parameters listed in the caption of Fig. 14. 
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tering at presently explored energies. To achieve a 
correct understanding of high-energy NN and NN 
scattering, which, because of the spin structure of the 
amplitudes will involve the application of our equations 
in the many-channel case, forms another interesting 
and important problem. 

Turning now to analytical problems, it is clear that 
an improvement of the one-pole approximation for the 
partial-wave amplitude is very desirable. By including 
the correct contribution of a few nearby poles in the 
partial-wave amplitude, one could probably obtain 
satisfactory solutions in all instances for the potential 
case. A representation of the partial-wave amplitudes 
solely in terms of Regge pole parameters should help 
such a formulation. 

I t would be. interesting to learn if the zeroes of the 
residue functions, which appear as input parameters in 
our equations in their present formulation, can be 
determined if several poles are coupled together. If this 
is not the case, how can one determine the number and 
location of the zeroes of a given trajectory? The residue 
functions of the Pomeranchuk trajectory have a zero 
when ap passes through zero. Since we have not taken 
account of this fact in the numerical work carried out 
here, it will be interesting to see how the solutions are 
modified if a zero is supplied. 

Finally, we wish to repeat that one feature of disper
sion theory, the crossing symmetry, has so far been 
totally neglected in our method. An application of the 
crossing theorem may enable one to determine many of 
the subtraction constants in a self-consistent manner. 
Work in this direction is still lacking. 
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APPENDIX: RELATIONSHIP OF THE TOTAL CROSS SECTION TO THE RESIDUE FUNCTION27 

The contribution of the Pomeranchuk trajectory to the 7T7r-scattering amplitude A (s,t) is 

2s \~\ r / 2u 

A(s,t) = ^p(t) 
M-(,+7^3)]+'-°{-(1+^)] 

2 simrap(t) 

where $v{t)=— ir[2ap(t)-\-l]rp(t)\ rp(t) = ResA(lyt)i=ap(t)- As s, u~* oo, we have 

i/s,(0r(a,(0+4) 

(Al) 

A(s,t)-
\t-4mx

2/ V-4mTV J 

3 7r1/2rM0+i) 2 simrap(t) 
(A2) 

This formula is valid for all s and u. Now let us consider the physical region in the s channel; s —> + oo . t—4mT
2<0 

and fixed. Then u= |u\e + i T . Equation (A2) then gives 

A(s,t) = %pp(t)(T
iv«*W-

r M O + i ) r 4* ypWre-^w+l [ <±S -\otpKt)r-e—irap{t)_j_i-i 

U-4w T
2 | J L2sin7rap(/) J 

T1/2T(ap(t) + l)L | t-4mr
2\A L 2sin7rap(/). 

The amplitude A (sj) is related to the total 7rx-scattering cross section by 

*vr(s)=(16ir/s)IinA(sfl). 
Now 

r(«P(0+4) 
II1L4 0, / ) = Jj8„(0 ^iraP(t) 

/—4m. 7r^T(ap(t) + l) 

Evaluating (A5) at / = 0 and setting ap(f)) = l, we find 

crX7r(oo)=(47r/3)/3p(0) 

0 f = - 4 7 T % ( 0 ) . 

A similar derivation, of course, applies to any other trajectory. 
27 We wish to thank Dr. W. G. Wagner for a helpful discussion of the points covered here, 

4s -japO 

(A3) 

(A4) 

(A5) 

(A6) 


